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1. INTRODUCTION

The purpose of this article is to illustrate the use of the
minimum discrimination information (MDI) approach in studying
null hypotheses of no linear interactions in contingency tables
of "one response many factors” type. In such contingency tables,
the data can be looked upon as a collection of as many multi-
nomial experiménts as there are factor-level combinations and
each experiment has a number of cells equal to the levels of a

response variable. One formulation of a "né linear

interaction" hypothesis

is that the cell probabilities of the response variable can be
expressed as linear funetions-of parameters which are- structurally
less complex. For accounts Iof different formulations of
no-interagtlon hypotheses and related references, the reader

is referred to Bhapkar and Koch ([1968] | Darroch r19747.

The "no linear interaction"” hypotheses can be formulated as

linear constraints on the underlying probabilities, written in



matrix notation as Bp = E. It is possible to apply MDI
analysis to obtain estimates of cell frequencies and test
various hypotheses and sub—hypotheses. If the hypotheses
are '"nested" the MDI statistic for the stronger hypothesis
(which imposes more constraints) can be analyzed into two
components, dne measuring disparity between the observed
distribution and the weaker hypothesis and the other
measuring disparity between the estimated distributions
under the two hypotheses. This feature of the MDI
statistics is not enjoyed by the chi-square-type or Wald-

type statistics used by many authors.

For the sake of clarity of presentation, we will
restrict ourselves to the hypotheses of no linear second
order interaction in a 2x2x2 table and in a 4x2x2 table.
This enables us to compare results with Bhapkar and Koch
[1968], who have viewed two sets of data as of the
"one response many factors" type. The analysis of a 2x2x2
table shows how the use of an approximation in'the MDI
statistic leads to a statistic used by Bhapkar and Koch
[1968]. Thé 4x2x2 table is analysed under two hypothesecs
of no linear interaction of second order, illustrating the

analysis of information mentioned in the.preceding paragraph |

2. GENERALITIES

For a three-way rxsxt table in which the first variable

is.a response and the other two variables are factors, onc



formulation of no linear second order interaction is given

by

(2.1) H_ = p(ijk) = p(d..) + u(ij.) + w(i.k}, i=

where the p(ijk) are subject to the constraints
(2.2) Zi=1p(ijk) = 1, for each fixed pair (jk),
and the parameters u depend only on the indicated indices. The
hypothesis Ho is equivalent to the following (r-l)x(s-1)x(t-1)
constraints in addition to those in (2.2):
(2.3) p(ijk) - p(ijt) - p(isk) + p(ist) = 0,
iﬁl,...,(r"'l), j:l"..’(s...:L),
k=l’obaf(t'—l) e
Writing
(2.4) p = (p(111),p(211),...,p(x1l) ,p(112),...,p(xst)) ",

where the (jk) indices are in lexicographic order, the

constraints (2.2) and (2.3) can be expressed as

(2.5) | Bp = 0

where the vector 0 consists of the first st elcments equal to
unity and the remaining elements equal to zexo. This is

illustrated in the examples bhelow.

Let x(ijk) denote the observed frequency in the (ijk)-th
cell and x denote a vector similar to p of (2.4). Also let

x(.jk) denote the total number of observations for the (jl)-th



factor combination and let N = E§=12§;lx(.jk). Basic to the
information analysis is the discrimination information

function
(2.6)  I(p:m) = 5 Ef  w(3k)E]_ P(1IK)2nrp (1K) /m(13kK)]

[y

where w(jk) = x(.jk)/N. The vector m is similar to p; it is
%n arbitrary collection of st probability distributions, each
on r cells. It is assumed that x(ijk), p(ijk) and w(ijk) are
poéitive for all (ijk). The choice of T depends on the
analysis at hand, When it is desired to assess the departure
of the data from an external hypothesis (as is the present
case), T is taken to be the vector of observed proportions in

each of the st factor combinations.

The MDI estimates x* (ijk) = Np*(ijk) are such that the
discrimination information (2.6) is miﬁimized subject to the
constraints Bp = 6. In other words, p*(ijk) is the distribution
which satisfies the hypothesized constraints (2.5) and is
"closest" (in the MDI sense) to the observed distribution.

There are several convergent iterative computer algorithms

for obtaining x*(ijk). One is described in the Appendix.

The MDI statistic 2IL(x*:x) = 2NI(p*:m) has a chi-square
distribution in large samples with degrees of freedom equal to

rank(B) - st.



3. THE 2x2x2 TABLE

Consider the probabilities of a 2 x 2 X 2 contingency

table (Table 1).

Table 1
B Ij=1 B =2
C k=l Yy k=2 C k=1 Yy k=2
i=1 A p(1lll) p(112) p(l21) p(l22)
i=2 a p(211) p(212) p(221) p(222)

The experimental procedure selects a fixed number of
observations under the four possible combinations of the
factors (B,B), (C,y) and determines the number of occurrences
of (A,0) for each case. In effect then the procedure is

examining four binomials with
(3.1) p(ljk) + p(29k) = 1, j=1,2,k = 1,2,

The corresponding observed values are shown in table 2,
It is desired to test whether the observed values are conslstent

with a null hypothesis of no interaction on a linear scalec,



Table 2
=1 F J=2

=] k=2 =1 k=2
1=1 x (111) x(112) x(121) | x(122)
1e=2 x(211) x(212) x(221) | x(222)
»x{.11) x(.12) x(.21) x(.22)

that is
Hy: p(l1l) - p(112) = p(121) - p(122)
(3.2) or p(lll) - p(1ll2) - p(l2l) + p(l22) = 0.

We shall determine estimates for the cell entries subject
to the null hypothesis and compare the estimated and observed
values. The estimated table is given in table 3 whexre the

LA's are to be determined.

Table 3
j=1 =2
k=1 k=2 k=1 ' k=2
=1 x(lll)-‘-)\1 x(112)+A2 x(121)+A3 x(122)+}‘\[l
=D x(2ll)--}\1 x(212)—-)\2 x(221%13 x(222)-)\4
x(.11) »(.12) x(.21) x(.22]

We shall use the principle of minimum discrimination
information estimation and thus determine the A's which

minimize



Ge(anyea ) en DA Cionnyaa ) X 21D Ay
x(lll) ' x(211)
+(x(112)02,) e H2)Ty g a10ymn,) an* (21207
x(112) x(212)
(121)+) % (221) -A
+(%(121)+x1,) &n% 3. (%(22))=A.) on’ 1T A3
(3.3) 3% =yt 3T
+(x(122) 42 ,) a2 (aa0y e ) anX (222070
x(122) Tx(222)
b{ x(LL1)#A)  x(L12)+A, x(L2L)+rg)  x(122)+X,
( % (. 11) TRy T X (.21) ¥ x(lzzj)

where 1 is a Lagrange undetermined multiplier and (3.2) is

reflected by the condition

(3.4) x(11L)4A;  x(112)+41, x(12L)+Ag  x(122)#r, _
x(.11) T x(I2y T (LAY x(.22)

+

l""’l4 leads

Differentiating (3.3 ) with respect to A
to the "normal" equations
n x(lll)+>\l § znx(le)—Al . T,
x (111} x(211) x{.L1) !
x(ll2)+A2 2nx(212)~x

n % A T 0
x(112) x(212) x{.12) g
(3.5) -
n X020 ORI
x(121) x(221) x(.21)
n x(122)+)\4 gnx(222)--)\4 . . '= 0,

22y T %(222) X(.22)

There are a number of different iterative approaches to determine
the solution to (3.5) but our interest here is to examinec the

relation of an approximate solution to other:proposed methods.



Assuming that the ratlos of A's Lo the observed values

are small, we use the approximations

gnx(lll)+kl N Al . In X(2%£?~
x (I11) 7 x(1I1D) x (211)
in (3.5) and get
/
Al . Al . T 0 =
*x(111) x(211) x(.1l1)
}\2 +>\2 - . L = 0 =)
x(1L2) %x1212) x(.12) :
(3.6Yy
s, A -1 0 =\
x (121) ox(221) »(.21)
Ay . Ay . T 0 =
x{122) X {222) X(.22)
~—

~ _ i} , etc.,
~ ®x(211)

x(.11) T

T A XTI TR
x(.12) T

x(112) %(212) x(.12)
x(.21) T

X121 x(220y ~ X(.21)
x(.22) T

Xx(122) x (222 7 X(.22)

From (3.6) and (3.4) we have, introducing the notation

% (113) = x(.13)p(L3), x(2i4)= x(.13)q(19), P(i3) + g(ij)

=R

-

("
A x(111l)yx(211) = - p(ll)g(1ll)t ,
1 p .
(x(.11))
A, = x(112)x(212) = p(l2)ql2)T
(x(.12))
(3.7) N ~
Vs = k(1?1)x(9?1) = p(2l)g(2)t ,
(x(.21))
Ay = - h(122jx(22 . = - B22)de2T,
(x(. 22))
T = p(ll) = p(l?) ~ p(?]) +Ap(?7)
p(ll)a(1l), J>(’?_\.f’.’“°\+~i2_id(?l> p(22) q(22)
b (L11) ¥ (17) % (o 21) X(.22)



Let us write

i
li

% #(111) »(111) + Ay, x*(21L1) x(211) - X, ,

(3. 8) .

i
il

x*(112) x(112) + A
etc.

where the A's satisfy' 2.5).

x*(212) x(212) ~ A

2’

If we also use the guadratic approximations

. | ] . (211) ~A
3,67 2{(x(111)+r.) gn X(L11)FAy , _ * 1
(3.9) 1 T + (x(211) Al) n ”ETEIIT““}
- 2
a2 ol 12 x(11) !
AL (5T o eI 1 XA =010~

$(.11)p(11) 4 (11)
then we get for the minimum discrimination information statistic

X*(iik)

2L (x*:x)=2L ¥ I x*(ijk)&n ;TTfkfn

2 ( PG | p(12)q(12) , p(21)a(21), §(22>5(22>}

-~

< x(.L11) x(.12) x(.21) ' x(.22)
a) " ”~ ~ ‘4 -~ 5 2
(3.10) e — SR p(12)-p(2itpl22) )"
p(Ag(1l) . p(l2)a(l2) | p(21)g(2)) ; p(22)q(22)
x(.L11) x(.12) x(.21)y x(.22)

L .

L S NPT 14 |
=) 2, 1 1
TLHOT ket Gatey T seier e oy t s

Note that the last value in (3.10) is the modified Neymran x%

2
(3.11)  x* = x {ohszexp)
l =)

and indeed the equations in (3.6) arc those to determine the
L . 2 . L :
wininum modified ¥~ estiwates. The next to last value in (3.10) is

the statistic gliven by Phaopkar and Roch [1908, p. 11¢] based on a



- 10 -

criterion due to Wald. The square root of this value is the

statistic used by Snedecor and Cochran [1967, p. 496].

In accordance with the minimum discrimination information

theorem (Kullbaék'[l959]) the log=-linear representation for

x* (ijk) is given graphically as in figure 1 where the in-

terpretation is

x* (111) _ .
in x* (21;_1;)__: I
Tx (1) T
n x*(112)
(3.12) "7 =yoy= Ty + t/x(.12)
tn x* (212
n x*(212) Ly

Pn x*(222) L

Recalling (3.8) we see that (3.12: in fact leads to (3.5).

If we write

ga=XF (111) _»>*(112) _x*(121) | x*(122)
(

x (.10 x(L12) T Tx(72Iy T T (THY
(3.13) :
2L _ x(12) . x02L) , x(22)
X( ) ( ) >L‘ L/ h )\(

then as shown in Kullback [1259, p. 101-106G]

(3.14) 2T(x* x) T (ox-0)%/0% ,

la)

where 02 is determined as follows. Let T denote the 8 x 5 matrix

in figure 1, that is,

=p* (L1)-p* (12)-p* (21)

=p{L1l) p (1 2)--p(?l) p(')?)

+17 (22),
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1 0 0 0 ~1/x(.11)
1 0 0 0O 0
0 1 0 0 -+1/x(.12)
0 1 0 0O 0
(3.15) I= 1o 0 1 o +1/x(.21)
0 o 1 o 0
0 0 0 1 =1/%x(.22)
0 0 0 1 0
and gx the 8 x 8 diagonal matrix with entries x(ijk), that is,
Me(111) 0 o . e ey : 0 |
0 x421l1) ' .
: x(112) _ g
(3.16) D = . x(212) . .
—X :
. x(121) 5
- 5 o x(221) 5
. ' x{122) 5
S T . x1222)

Compute the 5 x 5 matrix 8 = E'QXE and partition it as follows

. S = i 3
(3.17) s » 8y is 4 x 4, 5,, 1s 1 x &,
- t S - £Y
S8p1 = 8’32 38 1 x 4,

~

then 02 in (3.14) is given by

A2 ._J

It may be verified that this results in

N

82 _ x(L11)Yx(211) x(llz)x(21214 x(121) x(221) + w(122)yx{(222)

-
(3.19) 3

(x(.11))° (x(.12)) (x(.21))° (x{.22))°

P (1.2), L p2Dg(21) | p(22)al22) .

= PN p(77)”( 2). 1)
T ou) v) x (L 20) x (22}
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But 6% in (3.13) is zero and we see that (3.14) is indeed the
next-to-last value in (3.10). It is interesting to note that
21 (x%*:x) can be approximated without necessarily computing
the values of x* (ijk).

Note now that in oxder to express the hypothesis H of
(3.2) in the form B p= 0, we can let

p= (p(111), p(71L, p(112), p(L1l2), p(121), p(221),
p (129, p(222)),

(3.20) 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
?:.:
6 0 0 0 1 1 0 O
6 0 0 0 0 0 1 1
1 0-1 0-1 O 1 O
and
(3.21) 6= (1,1,1,1,0)°
Figure 1
i j' k|Ly L, L, L, T
1 1 131 -1/x(.11)
2 1 111
1 1 2 1 o+ 1/x(.12)
2 1 2 1
1 2 1 1 +1/x(.21)
2 2 1 1
1 2 2 L =1/x(.22)

20028 52 1
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We shall illustrate the preceding discussion by Bartlett's
data on root cuttings used also as an example by Snedecor

and Cochran [1967], Bhapkar andKoch [1968], Berkson [1972].

e following Table 4 from Bartlett [1935], whé refers
to data from Hoblyn and Palmer, is the result of an experiment
designed to investigate the ﬁroPagation of plum root stocks
from root cuttings. There were 240 cuttings for each of the

four treatments.

Table 4.
|
At Once In Spring
J=1 j=2

Long Short Long Short

k=1 =2 k= k=2

Dead 1=1 84 133 156 209
Alive i=2 156 107 84 31
240 240 240 240

By using the B and 0 defined in (3.20) and (3.21) and the
iterative algorithm described in the Appendix the MDI estimates
®* (19k) of the cell-frequencies are obtained as

82.883  134.213  157.117  208.448
157.117 105.787 8§2.883 31.552
They agree within round-off errors with those obtéined hy
Berkson [1972]. The MDI statistic 2T (x*:x) equals 0.0819 with

one D.T.
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THE 4x2x2 TABLE

Analysis of hypotheses of no linear interaction in a

4x2x2 table is illustrated by Schotz's data Table 5

on drivers

in injury producing accidents, taken from Table III of Bhapkaxs

and Xoch [1268], who regard accident severity as response and

the other two classifications

as

factors.

Table 5.
S axrmnre
Accident Moderately uenge
Severity (i) Minor 4 Moderate Severe | Ixtreme| Tota’
Nipidit! i ) T
Driver Group Accident{g)i
(k) Type () ~ .05 .33 .71 .93
Lone Drivex Rollover 21 5 1356 G644 2588
Non-rollovex 99¢C 5454 2773 125¢ i10479
Sub-total 1017 6021 4129 1900 | 13067
3 : pE
T | T 7
Injured Drivey: Rollover 18 553 1734 869 | 317
with '
Passencars |Non-rollover 679 4561 2516 1092 i.sazs
K C WGl 1 A Y ¥ .
|
|
Sub-total 627 5314 4250 1961 12022
Total 1714 11135 8379 3861 + 25089
— |
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1
et us iLgnore the nuncrical severity "rxidit scores L i=l,...4 and

consider the hypothesis of no lincar second order interaction formulated

in (2.3). Yhe B matrix is

Cell index: 111 211 311 411 112 212 312 412 121 2241 321 421 122 222 322 42:

1 i iR 1 0 0 0 0 0 0 0 0 0 0 0 0
0 Q 0 0 1 1 1 1. 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
(4.1) 3= 0 0 0 0 0 0 0 0 0 0 0 0 1 1 X 1
= 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0 0
0 1 0 0 0 -1 0 0 0 -1 0 0 0 1 0 0
0 0 1 0 0 0 =1 0 0 0 -1 0 0 0 1 0
and
(4.2) ‘ 9_= (L,1,1,1,0,0,0)".
Using the algorithm described in the Appendix, the MDI estimates of
cell frequencies come oul to be
x*(11l)= 27.32 x#(211)= 531.50 x*(31ll)= 1359.16 x*{41l)= 670.0%
xX*(121)= 932.32 x*¥(221)= 5535.91 x*(321)= 2768.49 x*(421)= 1242.2¢
X% (112)= 14.59 x*(212)= 583.70 x*(312)= 1733.23 x*(412)= 842,41
x*¥(122)= 734.45 x*(222)= 4884,30 x*(322)= 2522.48 x*(422)= 1106.7"

The MDI statistic 2I(x*:x) with 3 &.£f. is 19.703, which is significant at
5% level, showing that the data do not support the hypothesis of no

linecar second oxder interaction as given by (2.3).

It 1s interesting to examine here the hypothesis of no lincac
second order interaction with respect to average "ridits" considered
by Bhapkar and Koch [1968]. The hypothesis is

4 . . '
Hl : Ak = ;i=lri[p(1lk)-p(12k)] = A, k=1,2,

where A is a constant, This is equivalent to Ay - A, = 0. The

5x16 matrix B, corresponding to H, has the sane first 4 rows as B and

1
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the fifth row is
(rl,r2,23,r4,*rl:~r2, 3,~r4,~rl,—r2;r3rr4,rl,r2,r3,r4 ).

The vector 91 equals (1,1,%1,1,0)"'.

The MDI estimates x*l(ijk) of cell frequencies are given below:

x¥ (111} = 19.96 xi(211)= 551.09 Ai(Bll)z 1359.62 x?(4ll)= 657
x5 (121)= 1004.55 xy(221)= 5470.00 x7(321)= 2759.92 XT(421)= 1244,
xf(112)= 18.80 x¥(212)= 566.69 K](312)= 1732.79 xf(412)= R55
xz(l22) 671.88 x;(222)= 4543.52 Al(322)= 2529.15 xf(422)= 1103,

The MDI statistic ZI(xf:x) is 1.980 with 1 d.f. This should be compared
with the value 2.02 obtained by Bhapkar and Koch ([1968] for their

Wald-type statistic.

Now observe that "y is implied by the strongexr hypothesis HO

given by (2.3), since the fifth row of El can bhe expressed as a

linear combination of rows of B. To see this let B{(h) denote the

h-th row of B of (4.l1l), then
B, (5)= rlB(5)+rzB(6)+r3B(7)+r4[B( )=B(2)-B(3)+B(4)-3(5)~B(6)-B(7)].
Hence we can analyze the information 2I(x*:x) as follows:

Analysis of Informaition

Component due to Information D.F. Chi-square (Sﬁ)
Ho 2L (x*:x)= 19.703 3 7.815
2T (x* 138y )=17.723 2 5,991

Hl 21(xi:x)= 1.980 1 3.841
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We see that the data do not provide statistically significant
evidence against the hypothesis Hyp of no second-order interaction
with respect to average "ridits". In other words, this hypothesis
does explain the departure from the hypothesis (2.3) of no linear
second-order interaction.

Further analysis of these data can be done in two ways; in
terms of '"ridit" values and in terms of the non-quantitative
contrasts among p(ijk) gilven by the last three rows of the matrix
B of (4.1).

”Ridits" . Note that the data are not consistent with the
hypothesis of no linear second-order interaction (2I(x*:xj=19.763,
3 d.f.), while they'cén be regarded as consistent with the hypothesis
Hy of equality of means of the "ridit" values (ry,ro,r3,ry) of
the four distributions (21(xf:x)=1.980, 1 d.f.). The remaining
two degreés of freedom can be associlated respeCtively with the
hypotheses of equality of second and third moments of the "ridit"

values. the hypothesis H, of equality of means and second moments

(which iIs equivalent to the hypOthesis of equality of means and
variances) corresponds to a 6x16 matrix, B,, say, which has the
first five rows as in B, and the sixth row 1is

r?

12722

SN

-2 ~y2 .2
'Iz’ T3, s

2 2 2 2 -
(I‘l ’rz,ra’rz_La r19

and 6,=(1,1,2,1,0,0)"'.

r3,15)

,-",I'?:"rg,"r%,"ri,
Under H, the MDI statistic 2I(x} :x) comes out to be 10.036.
The difference 10.036-1.980=8.056 is the contribution due to the
additional constraint in B, as compared to B, assignable to
equality of variances, Finally the difference 19.703-10.036=9.667

is the contribution due to equality of the third moments in
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addition to the equality of the first two moments. Since each of
these differences is asymptotically a chi-square with one degree

of freedom , we conclude that though there is no significant

b
second- order linear interaction with respect to mean "ridits",
there appears to be a significant contribution due to heterogeneity
of the second and third moments of the four "ridit" distributions.

Non-quantitative approach. A different line of analysis treats

the response variable (accident severity) as a gualitative variable
ignoring "ridit" values. In this case, since the overall hypothesis
of no linear second-order interaction leads to a significant MDI
statistic (2I(x*:x)=19.703, 3 d4.f.) it may be of interest to
examine which of the three constraints (given by the last three
rows of the matrix B in (4.1)) contribute significantly to 2I(x" :x).
For this purpose , we set up several B-matrices omitting one or
two rows from the last three rows of (4.1) each time. For example,
the B-matrix without the seventh row corresponds to the (weaker)
hypothesis | |
p(111)-p(112)-p(121)+p(122)=0,
p(211)-p(212) -p(221)+p(222)=0.
Implicit in H, is the third constraint
[p(311)+p (411)1-[p(312)+p(412) 1-Ip(321)+p (421) 1+ p(322)+p (422) 1=0.
Hence H, tests no linear second-order Interactlon with respect

to levels 1 and 2 combining levels 3 and 4 of the response. Note

that under these weaker hypotheses the MDI statlstics will give
a value not larger than 19.703. The analysis is summarized in

Table 6.
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Omitfing rows 5 and 6 of the metrix B of (L4.1) corresponds
to the hypothesls of no linéar second-order interactlion in a
2x2x2 table with level 3, pooling all the remaining levels. This
is the only hypothesis with which the data are consistent. Thus
it appears that levels 1 and 2 of accldent severity both Jointly
and separately account for a major (significant) contribution
towards the presence of a linear second-order interaction.

Table 6 also indicates a way of reducing catégories in a
contingency table with the inherent gualities of the observed
data least affected. Thus if the gilven Ux2x2 table is to be
reduced to a 3x2x2 table, this should be done by combining
levels 3 and 4 Slmvlarly, if a 2x2x2 table 1s required as
a partial summary of the 4x2x2 table one should examipewali.-
the possible ways of pooling the levels of the response variable
and select the way in which the maximum contribution to the linear
second-order interaction is retalned. The possible ways are level

(1) against (2)+(3)+(4), (2) against (1)+(3)+(4),

(3) against (1)+(2)+(4), (L)+(2) against'(3)+(4);

(1)+(3) against (2)+(4), and (1)+(4) against (2)+(3).
The MDI statistics corresponding to the first three combinations
are glven in table 6 as the three entries 11.803,9.750, and 0,032
respectively. To find the MDI statistics corresponding to the
remaining three combinations one can add the last two rows of the
B-matrices when rows 7, 6, 5, are omitted one at a time. This gives
the MDI statistics as 3.517, 1.538, and 8.078 respectively. The
largest of thése MDI statistics is 11.803, showing that levels
2, 3, and 4 should be pooled and level 1 be retained in the

2x2x2 table.



The analysls above shows that levels 1 and 2 are the main

contributors to the departure from the hypothesis of no linear
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second-~order interaction.

MDI Statistics Under Different R-matrices

Operation on rows of (4;1)

Table 6

MDI statistic DRSS
Delete (7) 18.385 2
Delete (6) 12.125 2
Delete (5) 13.188 2
Delete (6), (7) 11.803 1
Delete (5), (7) 9.750 1
Delete (5), (6) 0.032 1
Delete (7), add (5)4and (6) 3.517 1
Delete (6), add (5) and (7) 1.538 1
Delete (5), 8.088 1

The work of the first author was suppocrted in peart by

add (6) and (7)
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APPENDIX

Described below is an algoritnm to obtain x*(ijk} = Hp*(ijk)
which minimize the discriminationinformation function (2.6) subject

to the constraints Bp = 8, where p is as in (2.4). (Gokhale [1974]).

With w(jk) = x(.jk)/N, multiply the first r elements of p by
w{ll), the second r elements by w(l2), and so on. The vector so
obtained can be written as Wp, where W is a diagonal matrix, the
entries in the first x diagonal positions being w(ll), those in the
next r dilagonal positions being w(l2), etc. In fact, it is easy
to see that Wop is a probability distribution over the rst cells.

The constraints Bp = 6§ can be written as
B Wp = 8 = Cip), say.

The elements of Wp can be indexed by a subsdfipt t, say. It is
thus sufficient to consider the problem of minimizing
(A.1) T(P:g )= I, Py zn(Pt/.Ht)

with respect to the constraints

(8.2) b= 8.

Note that C= BW™*, P = Wp and L= Wr.

— e

Assume now that the rows of g'are linearly independent. There

exists a-unique P* which minimizes~(kﬁl+~and satisfies -
(A.3) #n P* = 2n 1 + C')\

where &n a denotes (&n al,.p.,ln a,)' and A is a vector of Lagrangian

t
multipliers. (See Xullback [1959]). Let

(a.2) ¢™= c'(cc) ™t ana r= cc.
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Then equation (A.3) is eguivalent to

{A.5) (I~R} (&n P* ~ &n M) = 0.

The symmetric and idempotent matrix R projects vectors of dimension

equal to that of P onto the space spanned by rows of C. Lat

U={z:c'e+ (I-Riz >0 },

where for a vector X, x > 0 denotes that every element of x is
positive. Then fof'éveiy z e U, gfgﬁ(zégjz;ié a sclution of (ﬁbzlm
Conversely,lfor every probability vector P which satisfies (A.2),
there exists a z ¢ U such that P = gf§+(gf§)i@ The first assertion
is easy to verify and the second follows by setting z = P and

L2

noting that gfgax RP. Consider (A.l) as a function of z defined

over U. Then

I{z)y > 0,

the gradient G{(z) of Z{z) at z is
(a.6) G(z) = (I~R) {(n P(z) - in [ )
and the Hessian of I at z is
3 - -
(a.7) H{(z) = (I-R)(A({P(z))] “(I-R),
where A (b) denotes a diagonal matrix with elements of vector b in

the diagonal.

Being idempotent, I-R is positive definite,

so that I is a convex function of z over the convex set U,
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Thus for a Z satisfying G(zo) = (0, I{z) assumes its minimum over
U. In fact, G(zo) = { implies that the corresyonding_gjzo)

satisfies (A.5) in view of {(A.6).

At the s-th iteration the algorithm uses a vector z(s) in U

and the corresponding P (s) = g?g&(gfg)g(s}, I£
(A.8) fa(s)|= |clzts)]|< e,

where € > 0 is chosen according to the regquired accuracy, the
procedure is terminatsd and g?is set équal tO"gés}. If (A.8)
does not hold, the direction D(s) of maximum rate of decrease in
I(z) at z(s) is obtained by norxming (-G(s)). A positive

constant c(s), sufficiently small, is then found such that with

z(s+l) = z(s)+c(s)D(s) and

P (s+1)=Co (I-R)z(s+1)
(A.9) P (s+l) > O
and

(A.10) I(s+l) % XI(s).

The {s+l)~-th iteration is started with z(s+l) and P(s+1}.
One way of finding c(s) is to first set it equal to unity. It
is repeaéedly doubied untiEJ;géngévégiéywﬁr (A.10) is-violated.
If (A.9) or (A.10) do not hold with c{s) = 1, it is repeatedly

halved until they do.

Consider now the choice of z(1l) and P(l). If some >0 is

o > ‘g

known to satisfy. (A.2), we set P(l) = z(i) = p. If not can b

M



found easily, though by trlal and error, by several methods. One

method is to compute g(£) = A(E)C'[CA(E)C') ™+

probability vector £ and set p = q{f)1f the latter is positive.

0 for a positive

.
Another method is to check whether C 8+(I-R)E is positive and, if

A

so, set it equal tc P(l). Usually, putting £ equal .to the observed

probability vector gives the desired value of p. In fact, then
g (§) is the "minimum modified chi-sguare" estimate of P subject to

(A.2), which minimizes Z(Pt - Et)z/ﬁt, while gfg+(£f§)§ minimizes

the Buclidean distance between P and £. As such, these p serve as

good starting peints for the iterations.

The numerical computations of sections 3 and 4 were vrogrammed

in APL/360.
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